SUPER & CUSTOM COMMODORE SERIES

Design,
Construction,
Equipment
FEATURES

NOTE: The Hudson Motor Car Company reserves the right to make any changes or improvements on its products without incurring any liability or obligation whatever, and without being required to make any corresponding changes or improvements on products theretofore manufactured or sold.

ENGINE — Super-Six
(Used in both Super and Custom Commodore models)
High-compression, 6-cylinder, L-head type.
Bore: 3½ inches.
Stroke: 4½ inches.
Displacement: 262 cubic inches.
Compression Ratio: 6.7 to 1. (With optional aluminum head, 7.2 to 1.)
Horsepower: 123.
Lubrication: Full pressure, by extra-capacity, rotor-type oil pump.
Carburetion: Dual down-draft carburetor. High-compression induction system; automatic choke; climatic control.
Ignition: High-compression, high-voltage, moisture-resistant.
Spark: Automatic advance and retard.
Air Cleaner: Combined with silencer and backfire arrester.

ENGINE — Super-Eight
(Used in both Super and Custom Commodore models)
High-compression, 8-cylinder, L-head type.
Bore: 3 inches.
Stroke: 4½ inches.
Displacement: 254 cubic inches.
Compression Ratio: 6.7 to 1. (With optional aluminum head, 7.2 to 1.)
Horsepower: 128.
Lubrication: Exclusive Duo-Flo system. Oil supplied in direct ratio to speed of engine.
Ignition: High-compression, high-voltage, moisture-resistant.
Spark: Automatic advance and retard.
Air Cleaner: Combined with silencer and backfire arrester.

HIGH COMPRESSION
For the best possible performance from today's standard gasoline, Hudson engines have a compression ratio of 7.2 to 1 with the optional aluminum head. They are designed to permit higher compression ratios whenever higher-octane gas is available. Most competing engines were originally designed for lower compression ratios and must be completely redesigned before appreciable power and compression increases can be made.

Hudson years-ahead engineering makes the most efficient and economical use of the fuels available now, but Hudson engines can be stepped up to higher compression ratios when higher-octane fuels come on the market. But today, Hudson engines do not require the use of premium fuels for their high compression ratios.

L-HEAD DESIGN—Advantages:
Fewer parts, less wear, less upkeep, greater economy, more power! With all the valves on one side, fewer moving parts are needed to operate them. As an example,
it eliminates push rods, rocker arms, rocker shafts and other parts found in valve-in-head jobs.

This makes a quieter engine, reduces wear, simplifies upkeep, and assures better lubrication. From the standpoint of power and performance, the Hudson Super-Eight engine has proved to be one of the most efficient automobile engines ever produced—it develops more horsepower per cubic inch of displacement than any other eight-cylinder engine in any car on the market today.

HORSEPOWER—Higher, for Added Safety and Performance

The powerful Hudson Super-Six engine—America’s most powerful Six—develops 123 horsepower, while the even more masterful Super-Eight develops 128 horsepower. These power ratings, in relation to car weight, give Hudson cars a high power-to-weight ratio, which means that each horsepower has fewer pounds of weight to start and accelerate. As a result, they are lighter in weight and more productive of power than competing models. The only thing that can avert trouble, a Hudson’s reserve power is on instant call, to whip car and passengers instantly away from danger. Or—in ordinary pleasure driving, this reserve power may be called upon for brilliant pickup and unexcelled “get-up-and-go”—qualities for which the name “Hudson” has long been famous.

BORE AND STROKE—Their Real Significance

The diameter of the cylinder is the bore; the distance the piston travels up and down is the stroke. The bore and stroke of both the Super-Six and Super-Eight are carefully calculated to the last minute part of an inch for the greatest horsepower within the size limitations and for top performance with the utmost efficiency and economy from today’s regular-grade gasolines. The Super-Six engine has a bore of 3 5/8” and stroke of 4 3/4”. The Super-Eight engine, 3” bore and 4 3/4” stroke.

PISTON DISPLACEMENT

This is the volume of space in the cylinder between the lowest and highest points reached by the piston. When judged in comparison to the power output of the engine, it is a definite gauge of engine efficiency, which, in turn, is a big factor in operating economy. The power output of both the Super-Six and the Super-Eight engines, in comparison with piston displacement, is very high. In other words, the owner gets more power and performance from every gallon of gas used.

COMPRESSION RATIO

When the power output is high in relation to the piston displacement, as is the case with Hudson Super-Sixes and Eights, a higher compression ratio contributes greatly to increased fuel economy, better performance, and added power. The factors which make higher compression possible are: basic engine design, advanced carburetion, scientific manifold design, efficient valve action, and correct engine operating temperatures thermostatically controlled. All components in the Super-Six and Super-Eight engines have been designed for the new high compression ratio, with utmost efficiency from lower-octane, regular-grade, present-day fuels. At the owner’s option, the standard 6.7-to-1 ratio may be stepped up to 7.2 to 1 by the use of an aluminum head.

FULL PRESSURE LUBRICATION IN SUPER-SIX ENGINES

All moving parts in the Super-Six engines are lubricated by a highly efficient system specially designed for this type of engine.

The Super-Six engine is full-pressure lubricated by an extra-capacity, rotor-type oil pump. Oil is pumped directly under high pressure to the four crankshaft bearings, six connecting rod bearings, six cylinder walls, four camshaft bearings, twelve valve tappets, and the camshaft thrust bearing. Other parts are completely lubricated by splash, spray, or spray

The flow of oil from the rotary-type, high-pressure oil pump is constantly metered, and the floating-type oil

DUO-FLO LUBRICATION IN SUPER-EIGHT ENGINES

The Super-Eight engine, with its longer crankshaft and additional cylinders and parts, has a different type of lubrication system and one that has been especially designed for its special needs. In these engines, reservoirs of oil provide all the oil the bearings can use at any engine speed. These remain filtered when the engine stops, and give instant lubrication at the first turn of the engine in starting.

A further feature which contributes to better lubrication in the Super-Eight and to longer engine life lies in the labyrinthine system of oil cooling. In this type of oil cooler, exclusive with Hudson, the oil is cooled by passing it through a system of baffles and passages in the oil sump itself. Cool oil has greater viscosity or body than hot oil, and thus the Hudson Duo-Flo system is the ideal one for this modern, high-compression Super-Eight engine.

CARBURETION—How it Aids Efficiency and Economy

Dual carburetors of the down-draft type have been carefully engineered for the Super-Six and Super-Eight engines for maximum efficiency and fuel economy in all conditions of normal engine operation. The dual carburetors meter the exact amount of fuel needed, and do it automatically. When coupled with the direct-flow intake manifold, the proper mixture is always supplied to each cylinder, which adds greatly to fuel economy, and insures full power. Performance is also aided by the trouble-free automatic choke, the automatic mixture heat control, and the antipercolator valve which prevents manifold flooding.

In the Super-Eight engine, the carburetion system is the same, with one important addition. This is the use of compensating passages in the intake, which assure that the cylinders farthest from the carburetor receive exactly the same amount of fuel as those nearest to it. Thus, the power impulses are all equal, and a performance of unsurpassed smoothness and unequalled efficiency results.

AUTOMATIC CHOKE—How it Works

This feature of Hudson Super-Six and Super-Eight engines is entirely controlled by temperature and by the vacuum in the intake manifold. It leaves nothing to chance or the errors of human judgment, since it automatically regulates the intake mixture to the proper fuel mixture for any phase of its operation under all temperature conditions. As the engine warms up, the richness of the mixture is automatically cut down so that the engine always has the proper fuel mixture at any phase of its operation. This automatic control also adds to economy, since it prevents carburetor flooding and waste of gasoline, and prevents spoiling the lubricating oil by crankcase dilution with raw gasoline.

Engine Construction and Equipment

AIR CLEANER—Cuts Engine Wear—Quiets Air-Intake Noise

Dust, dirt and grit are prevented from entering the engine by a scientifically designed air cleaner. The ported type of air cleaner, on both the Hudson Super-Six and Super-Eight engines, filters out these harmful impurities, even in very dusty regions, thus preventing them from entering the engine and forming an abrasive compound which would be harmful to cylinders and bearings. The hissing or rushing sound caused by the large volume of air the carburetor draws in to form an explosive mixture is effectively silenced by this very thorough cleaner, thus eliminating another source of running noise. And the cleaner also acts as an efficient backfire arrester, an important safety feature for owners.

AUTOMATIC SPARK ADVANCE AND RETARD FOR FULL Power at All Times

Proper ignition timing is essential if the engine is to deliver full power with the greatest possible economy, and the proper timing varies with the speed of the engine.
Timing is controlled by a vacuum unit, which advances the spark as the engine speeds up, and retards it as it slows down or is subjected to a hard pull. Thus the driver is sure of perfect engine timing at all times and under all conditions of operation, for the greatest economy and most satisfactory performance.

BATTERY—Ample Capacity for All Normal Needs

A large, improved 17-pla, 100-amp-hour storage battery is standard equipment on both the Hudson Sper and Custom Commodore models. Combined with the high-output generator, this storage battery provides all the electrical energy needed for starting, lighting, and ignition, plus a reserve of energy for added equipment, such as a radio, fog lights, Wether-Control fan, and so on.

CAMSHAFT—Quiet and Long-Wearing

In both the Super-Six and Super-Eight engines, the camshaft is of nickel-chrome-molybdenum alloy for maximum tensile strength. Cam surfaces are heat-treated for extra hardness, ground to a super-smooth finish for minimum friction and long wear, and phosphate-finished for better lubrication and quietness in use. This process causes the oil to adhere more firmly to the face of the cam.

CAMSHAFT BEARINGS—Oversize, for Long Life

These bearings are of large size, and live-reamed for accurate alignment throughout the entire length of the shaft. Each of the camshaft bearings is adequately lubricated for long wear and trouble-free service.

CARBURETOR HEATER—How it Works

This unit directs a flow of hot exhaust gas to warm up the fuel mixture and thus provide the exact vaporization needed. It helps make for smoother and more efficient engine operation during the warm-up period, and adds to operating economy. In actual use, the hot gases circulate around the carburetor intake jacket to heat the fuel mixture as it passes into the intake manifold. Operation is entirely automatic, and heat flow is thermostatically controlled for quick engine warm-up, maximum fuel economy, and full power from the engine at all temperatures.

CONNECTING RODS—Their Design

All Hudson connecting rods are forged of special high-manganese alloy steel for maximum strength, and are weighed and matched up in balanced sets. Bearings are centrally located—not offset—for perfect balance, both standing still and running.

CONNECTING ROD BEARINGS—Description

Super-Six connecting rod bearings are of the steel-back type; Super-Eight connecting rod bearings are of the internal type. These bearings are of long-wearing babbitt metal. They are extra-large, and fully lubricated for long life.

COOLING SYSTEM—Component Parts

This system in both the Super-Six and Super-Eight is the closed-type, pressure-cooling variety, combined with a cellular-tubular radiator having a high flow rate. This new closed-pressure system promotes more efficient circulation of coolant and maintains more constant temperature for better engine performance. Water is circulated through the system by a ball-bearing, self-sealing, permanently lubricated pressure pump having a large, 6-bladed impeller. A water by-pass, controlled by a thermostat, provides a fast, efficient engine warm-up.

CRANKCASE FILTER AND BREATHER

This is a dry, wire-mesh cleaner, through which air is forced into the crankcase to assist in the removal of acid-laden crankcase vapors and other non-ferrous metal parts. These vapors are a natural product of oils and gasolines during engine operation. They would form acid, sludge and gum—especially in cold weather—and would cause excessive engine wear if not removed. The air crankcase cleaner also prevents the addition of outside dust and grit to the crankcase oil, thus preventing abrasion and needless wear on engine parts.

CRANKCASE VENTILATION

A breather opening on the side of the engine permits the vapors, discussed above, to be drawn out into the air stream beneath the moving car.

CRANKSHAFTS—Design and Construction

The husky crankshafts in Hudson Super-Six and Super-Eight engines are forged with integral counterweights and fully compensated for vibrationless operation. They are made of special steel of unusual toughness and tensile strength, which produces crankshafts of the exceptional strength and ruggedness necessary for high-compression operation.

All crankshafts are statically balanced (while standing still and dynamically balanced (while revolving) to eliminate the vibrations set up by centrifugal force when the engine is running.

Main bearing and connecting rod bearing surfaces are precision-ground to unusually close tolerances to eliminate strain and wear and provide long, trouble-free bearing life.

CRANKSHAFT BEARINGS—Or Main Bearings

SUPER-SIX ENGINE: The four crankshaft journals (i.e., points where the shaft revolves in bearings fastened to the cylinder block itself) have extra-large bearing surfaces to withstand the stresses of high-compression operation. The precision-type crankshaft main bearings are steel-shell and babbit-lined. They are engineered and manufactured to close tolerance that assure a perfect fit. The special bearing metal used eliminates friction to such a degree that, under average conditions, the bearings are good for the entire life of the engine. Crankshaft bearings in the Hudson Super-Six engine are full-pressure lubricated.

SUPER-EIGHT ENGINE: The crankshaft journals on the Super-Eight engine, rivet in number, have extra-large bearing surfaces to handle the higher power output of this exceptionally powerful engine. Special bronze-backed, babbit-lined crankshaft main bearings are designed for extra-long life. These bearings run in a constant oil bath supplied by Hudson’s exclusive Duo-Eflo lubricating system, which gives full lubrication to these vital parts the instant the engine starts to turn.

CYLINDER BLOCKS—Why They Are of Super-Hard, Chrome-Alloy

Instead of the mild cast iron ordinarily used in cylinder blocks, the Hudson Super-Six and Super-Eight engine blocks are made of a special chrome alloy, thus making them the hardest, most durable, and longest-wearing blocks in the automobile industry. They will actually outwear ordinary cylinder blocks by thousands of miles. This means that high compression is maintained in a Hudson engine long after the time when ordinary engines must be re-sleeved or rebored to restore cylinder roundness and compression. Thus the Hudson owner gets high-compression performance for a much longer running time, with full power and lower consumption of both gas and oil.

This feature also reduces upkeep cost; pistons and valves, for example, give much longer service without attention. And because of the high chromium-content, Hudson cylinder blocks machine to a mirror-smooth finish, greatly reducing friction in the cylinders, and making it unnecessary to install special valve seats of tungsten or chromium alloy, which must be done in ordinary engines.

CYLINDER BLOCK COOLING—SUPER-SIX ENGINE

Each cylinder in Hudson Super-Six engines is completely surrounded by water flowing rapidly under high pressure. This cools not only the cylinder walls themselves, but also aids in cooling the lubricating oil, thus maintaining its efficiency as a lubricant. In addition, a water distribution manifold, connected to the water pump, distributes coolant direct to all cylinder walls and valve seats for the most efficient cooling to the points of greatest engine heat.

CYLINDER BLOCK COOLING—SUPER-EIGHT ENGINE

Extra-large water jackets in the Super-Eight engine assure effective cooling of cylinders, valves, pistons and cylinder head. Water, in large volume, is circulated rapidly by the extra-capacity centrifugal pump to maintain proper running temperatures at all operating speeds.

CYLINDER HEAD—Special Power-Dome Design

The scientific design of the combustion chamber in cylinder heads in both the Super-Six and Super-Eight engines is exclusive with Hudson, and is called the "Power-
DAMPENER—A Crankshaft Vibration Check

Certain vibrations occur in any engine, no matter how carefully balanced. The new, improved Hudson vibration dampener absorbs and cushions these running disturbances, thus insuring a smooth flow of power. In the Hudson Super-Six and Super-Eight engines, this dampener consists of two members. One is joined rigidly to the crankshaft, and the other, like a small flywheel, is connected to this rigid member by live rubber surfaces, forming a resilient connection.

Unlike some other types of dampeners, this improved Hudson design has no parts that require repair or replacement.

DISTRIBUTOR—Its Design

Superior engineering makes this electrical ignition unit both moisture-resistant and accurate in operation. It is precision-built for long, trouble-free service.

ENGINE MOUNTINGS—3-Point Suspension

Live rubber mountings cushion the power plant and prevent the transmission of sound and vibration from engine to body. The rigid body-to-engine design ensures maximum vibration-free operation.

The front engine mountings are of an improved Hudson design combining the resilience of live rubber and the cushioning qualities of air to absorb vibration. Rear mounting is of solid live rubber, making an improved three-point, balanced combination that absorbs engine running, starting and stopping disturbances in a most effective manner.

EXHAUST MANIFOLD—With Large Outlet

Large ports permit quick dispersal of burned gases. This efficient manifold is supplied with a heat valve which diverts the hot gases to warm up the carburetor intake jacket whenever necessary. The heat valve is controlled by a thermostat which shuts off the exhaust gases from around the carburetor as the engine warms up. This insures efficient engine operation under all temperature conditions.

EXHAUST PIPE—Between Engine and Muffler

In the Super-Six and Super-Eight engines, this is of large size to permit the quick outflow of exhaust gases from the engine, and thus lessen back pressure and consequent loss of power. The connections to engine and muffler are leakproof.

FAN—Modern, Silent Design

The fan on the Super-Six and Super-Eight engines has large blades, throwing a large volume of air as they revolve, thus greatly increasing cooling efficiency. Normally, such a large fan would be noisy, in much the same manner as a plane propeller is noisy. However, by scientific spacing of the blades, this Hudson fan is out of phase or pitch with sound frequencies from the engine, and is practically noiseless. Another important factor is the fan's comparatively slow speed, because of its efficient design, it can be driven more slowly than fans of ordinary type, and still move large masses of air. The shaft of the fan is cadmium-plated to prevent corrosion or rusting, and runs in double-row ball bearings, permanently lubricated, and lifetime-sealed. No adjustment or maintenance of the fan itself is required. V-belt drive is easily adjustable for proper tension.

FUEL PUMP—Mechanical Type for Positive Action

A large, constant-pressure, mechanical fuel pump for maximum flow is standard equipment on all Super and Custom Commodore models. It is the diaphragm type and its positive action keeps a constant flow of gasoline to the carburetor and prevents vapor lock at high temperatures. It is operated by the camshaft.

GENERATOR—New, High-Capacity Type

The new design, shunt-type generator, used on both the Super-Six and Super-Eight engines, is capable of a high-ampere output at slower speeds, thus keeping the battery charged during times of excessive current drain, such as frequent starting, the installation of extra lights or accessories, continuous use of the radio, and so on. The generator is cooled by a fan, forced by engine vacuum, a voltmeter regulator prevents battery overcharging and provides constant protection for all electrical equipment.

IGNITION COIL—High-Compression Designed

The high-efficiency ignition coil, used on both the Super-Six and Super-Eight engines, has a higher output, because of the increased spark intensity needed for modern high-compression engines. This hotter spark insures fast starting, better fuel combustion, and greater engine efficiency. Location of coil and short high-tension leads reduce radio and television interference.

IGNITION SWITCH AND LOCK

These are located to the right of the steering column and directly in front of the driver. When the parking lights are on, the keyway is locked, so that it is easy to insert the ignition key at night. The starter will not work until the key is inserted and turned to the "ON" position—a safety factor which prevents the accidental starting of the engine by either children or adults.

IGNITION SYSTEM—New High Voltage

The higher compression of both the Super-Six and Super-Eight engines requires a new high-voltage type system, which is moisture-resistant for dependable operation during wet weather. The wiring is weatherproofed and an octane adjustment is provided to adjust engine timing for highest performance on various grades of fuel. Advanced-design, Hudson-engineered spark plugs, built for extra-long life, are installed in all Hudson high-compression engines. Spark plug terminals are shielded against moisture and other causes of short-circuiting.

INTAKE MANIFOLD—New High-Compression Design

A high-compression induction system of fuel intake is used in both the Super-Six and Super-Eight, with manifolds so designed that the gas is distributed evenly to all cylinders, regardless of their distance from the carburetor. This scientifically equalized distribution of fuel in Hudson engines results in uniform power impulses, smoother engine operation, and lower fuel consumption.

MUFFLER—New, Super-Silent Type

This unit is of extra-large size, designed to reduce engine exhaust noise to a minimum. It is of the straight-through, double-tube design, which enables the gases to pass swiftly to the open air without building up back pressure. This permits the engine to develop full power and give maximum performance. Heat from the muffler is kept from the passengers by locating the muffler at the extreme rear of the car.

OCTANE ADJUSTMENT—Gives a Wide Choice of Fuel

Once the owner has settled on a certain brand or grade of gasoline for his Hudson, the ignition distributor on the engine may be adjusted to give him the best possible engine performance for that particular gasoline.

PISTONS—Are of Improved Design

A silicon-aluminum alloy of great hardness is used for the pistons in both the Super-Six and Super-Eight engines. This superior piston provides a superior bearing surface that is free from scuffing or scoring. The piston design controls expansion, and prevents warping under temperature changes. They are cast-ground to insure a close fit and to insulate bearings from perfect roundness and clearance during all operating temperatures. External surfaces are machined to a glass-smooth finish, and piston-pin holes are diamond-bored for accuracy.
PISTON PINS—Are of Full-Floating Type

These are free to rotate, not only in the bronze bushing at the end of the connecting rod itself, but also in the diamond-bored holes in the piston. The pins are carefully ground, and then lapped to a super-smooth finish, and size is held to within 3/10,000 of an inch, to assure a perfect fit in the connecting rod.

PISTON RINGS—Pinned in Position

There are two compression rings and two oil-control rings on each piston in Super-Six and Super-Eight engines. These are pinned in position so that they cannot rotate around the piston after installation or cause eccentric or irregular wear—a Hudson feature. The ring slots are thus prevented from lining up above the other to permit a possible compression leak into the crankcase. All rings are treated by an exclusive Hudson process to prevent scuffing of the cylinder walls.

RADIATOR—New Type, for High-Compression Performance

Hudson radiators are of the cellular-tubular type, with a high flow rate for fast heat dissipation. This assures proper engine cooling for all temperatures and under all operating conditions—an important factor in the operation of a modern high-compression engine like the Hudson Super-Six or Super-Eight.

SPARK PLUGS—Designed and Developed by Hudson Engineers

The Hudson-designed spark plugs used in Super-Six and Super-Eight engines have much greater life than ordinary plugs. The high-temperature resistance of the insulating body prevents electrical leakage and short-circuiting from moisture, grease, and dirt. The spark-plug wire terminal is shielded to resist short-circuiting.

STARTER SWITCH—At Finger Tip

Located at the left end of the steering column, this switch is directly in front of the driver, and will not operate unless the ignition switch key is inserted in the lock and turned to the "ON" position. This prevents accidental starting by children or others, and is a typical example of the extra safety features found in Hudson cars.

STARTER MOTOR—High Torque, High Efficiency

Easy and quick starting at any temperature is assured by this new motor. It has more than sufficient power and capacity to turn the engine over at fast speed. The improved Bendix starter drive is positive and trouble-free in operation, and designed for extra-long life.

TAIL PIPE—Short and Efficient

This pipe, extending from the muffler to the open air behind the car, is much shorter than on cars where the muffler is located midway of the body. Moreover, it is free of the kinks and bends that long tail pipes from centrally-located mufflers must have to clear frame and under-body members, which build up back pressure to interfere with efficient engine operation. The short, straight Hudson tail-pipe reduces back pressure—another factor which contributes to the sensational performance of Hudson Super-Six and Super-Eight engines.

TAPPETS—Quiet, Long-Wearing

These parts take the lifting motion of the cams, and transmit it to the valves; hence, it is important that they be quiet and efficient.

SUPER-SIX ENGINES: In all Hudson Super-Six engines, the tappets are of an improved rotating mushroom type, with self-locking adjusting screws. The "rotating" feature simply means that the end of the tappet is widened, to provide a large rotating surface, and thus reduce wear at any one point. The self-locking feature assures that tappet adjustments for proper clearance can be quickly and easily made, and once made, will stay put. There are no lock nuts to set up, or work loose, and all tappets are pressure-lubricated. The guides are actually a part of the cam-shaft and cylinder head block itself, assuring perfect alignment and long life.

SUPER-EIGHT ENGINES: Super-Eight engines have exclusive cam-roller design tappets. The revolving lobes of the cam-shaft maintain constant contact with the tappet rollers, requiring less frequent adjustment and providing longer life.

VALVES—Corrosion- and Heat-Resisting

A special alloy intake valve, combined with a heat-resistant exhaust valve, has a high nickel content, makes the valve arrangement of both the Super-Six and Super-Eight engines unusually trouble-free and long-lasting. The valve seats are a part of the head. Hudson cylinder heads are self-centering, and valve guides are reduced to a minimum, thus preserving the high compression of Hudson engines, and contributing greatly to their unusually long, and uniformly high performance.

VOLTAGE REGULATOR—Guards the Electrical System

Of the latest and most advanced type, this important unit automatically guards the electrical system of Hudson cars from dangers of shorting and overloading. It also automatically regulates the generator charging rate, to keep the battery charged, yet, at the same time, prevent overcharging. When demands on the battery are heavy, and output from the generator is reduced, the voltage regulator automatically cuts in to protect the generator from damage.

WATER PUMP—Positive and Powerful

Designed to move a great volume of water through the cooling system in a constant flow, and with comparatively slow pump speed, the Hudson rotary pump insures positive circulation and cooling. The slow pump speed also reduces wear and the need for replacement or frequent servicing of the pump unit. The pump shaft, cadmium-plated to reduce corrosion, runs on double-row ball bearings, and is permanently lubricated and sealed for a lifetime of trouble-free operation.

BY-PASS—In Water Pump

A by-pass is built into the water pump without the use of external hoses or clamps. It allows the water to circulate only within the engine until efficient operating temperature is reached, shortening warm-up time, saving fuel, and reducing wear. When coolant has reached proper temperature, the thermostatic control opens, and allows regular circulation through the entire cooling system. This also warms up the weather-Control heater very quickly in cold weather, saves engine warm-up time, and contributes greatly to over-all operating economy.

WIRING—Spark Plugs and Other Ignition Points

All the ignition wiring on the Super-Six and Super-Eight engines is waterproof and of extra capacity to transmit without loss the high voltages needed for high-compression performance.

MECHANICAL FEATURES

BRAKES—Are Triple-Safe

Hudson provides the extra safety of three methods of brake application: 1) power-forced hydraulics, 2) mechanical reserve system, and 3) finger-tip-release parking brake.

For general use, Hudson provides the finest 4-wheel hydraulic brakes—proportioned front and rear to carry weight distribution for smooth, straight-line stops with feather-touch pedal action. They are of the self-energizing "Servo-action" type, which converts forward and rearward rotation of the wheels into extra braking pressure.

The reserve mechanical system, operating from the same brake pedal, is always ready to take over if hydraulic pressure should fail, as it can in any car due to accident or neglect.

The finger-tip-release parking brake handle is conveniently located under the instrument panel on the left side. This braking system is also fully enclosed and protected for positive operation at all times.

Hudson—and Hudson alone—has exclusive Triple-Safe brakes, three methods of brake application, for greater braking safety than can be found in any other car.
“SERVO-ACTION”—Self-Energizing Brake Operation

The hydraulic brakes used on all new Hudsons are of the "Servo-action" type, which requires only a very light brake pedal to operate—a feature of especial benefit to women drivers.

Briefly, this system employs the rotary forward or rearward motion of the wheels to wedge the brake shoes more tightly against the drum as pressure is applied. At fast or slow speeds, a light touch on the brake pedal brings the car to a smooth stop. The energy of the moving wheels of the car is picked up by the brake shoes as pressure is applied at the pedal; the shoes attempt to follow the brake drum around, but since they cannot, this energy is applied through a wedging action to force the shoes against the drum for more effective braking action. Thus the braking action may be applied as slowly or quickly as the driver desires and the car comes to a smooth, safe stop at all speeds—another feature which contributes toward making Hudson the "safest car on the road."

 BRAKE DRUMS—Contraforce Type

This ultramodern type of brake drum is probably the most expensive to make of any type now on the market. But it is also the most efficient, satisfactory, and longest-wearing, and that is why Hudson uses it as a part of its all-round, high-performance doctrine.

The outer casing of the drum is a special alloy steel of great strength, while the inner casing is a special cast alloy which is very hard and long-wearing. This inner casing is sprung into the outer casing while hot, thus fusing the two metals together, and forming a drum which cools very quickly in use, preventing distortion and the dangerous brake "fading" often found in ordinary types of hydraulic brakes when the drums get hot and expand.

To keep out water, dirt, and other harmful substances, Hudson engineers have fitted the brake drums with patented shields—a feature not found on many competing cars.

FLUID-CUSHIONED CLUTCH—Smooth, Positive, and Trouble-Free

This feature is exclusive with Hudson, and adds immeasurably to the pleasure of driving. In ordinary cars, two bone-dry friction surfaces are forced together when the clutch is engaged, setting up conditions which lead to clutch "clatter" and "grabbing."

Conditions are exactly opposite when a Hudson Fluid-Cushioned Clutch is operated. Moving in a continuous bath of special clutch oil, a Hudson clutch brings heat-treated, oil-imregnated cork surfaces into contact with the face of the steel flywheel; the clutch has a live, springy action, and the fluid serves as a further cushion to break the impact as the two surfaces come together.

The result is a soft, yet positive connection between engine and transmission that gives what engineers call a soft, "car's-paw" action. Yet, with this softness and velvety smoothness, the Hudson Fluid-Cushioned Clutch is the longest-wearing, and has the longest, most trouble-free life of any clutch now in use.

NOTE:
The Hudson Fluid-Cushioned Clutch must not be confused with the fluid drives or couplings found in some other makes of automobiles now on the road. These fluid couplings do not provide a positive connection between engine and transmission; they slip at practically all speeds, and cause a continuous power loss, which may run as high as 15%—not to mention the added wear on the engine, and the continuous waste of both gas and oil.

The Hudson Fluid-Cushioned Clutch costs more to build; but it costs the owner far less to operate, since it doesn't slip as the car is accelerated or as it rolls along the highway.

INDEPENDENTLY-SPRUNG FRONT WHEELS—How They Operate

Hudson front springs are of the coil type, made of a silico-manganese alloy which is almost impossible to break in service. These springs are so mounted that they have no connection with steering or driving, or braking the car; their only function is to cushion the load. The heavy steel wishbone support arms of the front suspension system absorb all the driving and braking stresses. Large rubber bumpers, mounted on the lower support arm, prevent the springs from "hitting bottom" on extremely hard jolts.

This front-end suspension in the Super and Custom Commodore models is but a further example of the typical way Hudson provides extra safety throughout the car.

PROPELLER SHAFT—A Direct-Line Drive

This driving unit is underslung and tandem in Hudson Super and Custom Commodore models, to provide a direct-line drive from the engine to the rear wheels. The entire propeller shaft assembly is balanced, and supported by a midway, steady-bearing mounted in rubber, for smooth, vibrationless operation.

Because it is under far less strain, the tandem shaft Hudson uses is more substantial and long-lasting. Car operation is more efficient because power transmission is smoother. These advantages contribute to efficiency, to economy, and to smooth operation far beyond that offered by the usual long, single shaft with a single universal joint.

REAR AXLE—Semi-Floating Type

New hypoid driving gears allow the drive pinion gear to be mounted below the center of the ring gear. This permits a lower body-frame to provide a lower center of gravity. The hypoid gears also have larger tooth contact and greater tooth strength to assure long and trouble-free service. Hudson rear axle gears are fully adjustable to insure perfect alignment and complete silence at all times.

REAR AXLE SHAFTS—Extra-Strong, Extra-Safe

The axle shafts in Hudson Super and Custom Commodore models have been made extra-strong and durable through the use of a special high-tensile-strength nickel-chrome-molybdenum-steel alloy, and have been specially designed for hard usage and severe road service.

REAR AXLE BEARINGS

These are of the tapered roller type, for long life and perfect alignment; wheel bearings are packed with lubricant at the time of assembly, and require servicing only every 10,000 miles or once a year. Inner bearings are lubricated by the lubricant used in the rear axle.

REAR SPRINGS—Engineered for Soft Riding

Long, gentle-acting leaf-type springs are used on the rear of all models of the new Hudsons, with a special rubber mounting between the rear axle and the spring to cushion road shocks. The U-type, self-adjusting shackles at the rear of the spring is fitted with a rubber seal to prevent the entrance of grit and dirt. The front end of the spring is mounted in rubber, so that the mounting is permanently quiet and does not require lubrication. The result is a gentle, quiet ride under all road conditions.

REAR SPRINGS SPLAY-MOUNTED

"Splay mounting" means placing the springs at an angle with the rear ends farther apart than the front ends, where the usual practice is to place the springs parallel to each other and to the frame. Exhaustive engineering tests in the laboratory and on the road have proved that Hudson's splay-mounted rear springs greatly reduce side-sway and give riding qualities far superior to those in cars with ordinary parallel-mounted springs.

SHOCK ABSORBERS—Airplane Type

The large double-acting, airplane-type shock absorbers in the Super and Custom Commodore models are sealed for life. Introduced by Hudson, these extra-large, extra-capacity shock absorbers hold four to seven times the amount of fluid that ordinary, elbow-type shock absorbers do. Thus, the fluid inside the unit can be handled in larger volume, and passed through larger apertures at lower pressure. This creates a bigger, softer "cushion" to absorb road jolts and bumps, where older elbow-type absorbers, with a smaller amount of fluid, passing through smaller outlets, tend to give a much stiffer, more jolting ride. Front shock absorbers are mounted inside the coil springs at the exact center of spring action. This most effective mounting for control of spring action, now widely copied by other makers, was perfected and introduced by Hudson.
STABILIZERS—Front and Rear

These units prevent side-sway in heavy winds and on rough roads; they also check the tendency of the moving car to "heel over" to the outside of a curve. All new Hudson models have these stabilizers front and rear, instead of at the front end only as in most other makes of cars.

The front stabilizer is a new, dual-acting type which eliminates side-sway in heavy winds and stabilizes the ride on rough roads, in heavy winds, and on sharp turns. It also aids in easier turning and steering. The unit is mounted in rubber, and connected to the front-suspension lower control arm.

The rear stabilizer controls axle "hopping" and the continued vibration from axle and rear spring action, which would otherwise have a tendency to accumulate, and even build up long after the initial road shock has passed. This increases both safety and riding comfort. On this improved design, one end of the rear stabilizer acts as a fulcrum, and is connected to the body-and-frame member in a special rubber mounting. The other end is rubber-mounted to the rear axle for effective operation.

STEERING—True Center-Point Design

A development perfected by Hudson, Center-Point steering has recently been adopted by several others in the industry—proof positive of the basic soundness and far-sightedness of Hudson's basic engineering conceptions. Center-Point steering gives equalized control of each front wheel, eliminates car-wander and steering-wheel fight, provides easier and safer car control.

It costs more to build Center-Point steering, but of the extreme accuracy required in every part. But the results are worth it. The driver gets safer control and the greatest steering stability over all kinds of roads, and at all speeds. Uniform control is always assured, no matter what the conditions of speed or highway. This is still another example of the technical superiority of Hudson design, which has won it the title of "America's safest car."

STEERING GEAR—Worm-and-Roller Type

Steering shaft and cross shaft in the steering gear of Hudson Super and Custom Commodore models are carried in needle roller bearings for easiest and most friction-free operation. More costly to build than conventional steering, the longer life and safer, more positive control make Center-Point steering a joy to every driver who tries it . . . not to mention the ease and flexibility which complete U-turns may be made, and the slight effort required to get in and out of tight parking spaces.

STEERING RATIO—20.4 to 1

This low gear reduction, combined with the new 18" steering wheel, on all Super and Custom Commodore models, is another added factor in the unequalled ease of handling that their owners enjoy.

The rim of the steering wheel is unusually easy to grasp, and its bright, modern finish harmonizes beautifully with the ultra-modern interiors offered in these two fine cars.

TIRES—New, High-Volume, Low-Pressure, Super-Cushion Type

Super-Cushion tires on the Super and Custom Commodore models are 15 x 7.10 in size, and are standard equipment on all cars in the two series. (Convertible models are equipped with 15 x 7.00 size.) Larger and softer, these new Super-Cushion tires gently cushion car and passengers, reduce road shocks, and lengthen the life of the car. Their lower pressure and more flexible construction give better traction and safer car handling.

TIRE RIMS—Wider Base for Greater Safety

These rims are manufactured specially for use with the new Super-Cushion tires.

TRANSMISSION—An Exclusive Hudson Design

Hudson-designed and Hudson-built, with improved handy-shift control at the steering wheel for precise action and easy operation, this synchronized transmission enables the driver to shift gears quickly and quietly. The helical gears, machined to close limits, are noiseless in operation, and all shafts are supported by specially designed ball or steel-bushed babbit bearings, depending upon the type of friction or thrust that is to be overcome.

Positive lubrication is provided to all points of the transmission. The unusually liberal use of high-quality bearings, plus thorough lubrication, makes this an exceptionally quiet, easy-operating, and long-lived transmission.

TRUNK or Luggage Compartment

Master-size, holding as many as 15 large and small pieces of luggage, the compartment is fitted with a projecting floor. Car seat sides are pleated to match the color of the car, and the deck-lid is fitted with spring-loaded hinges for easy opening and closing. A theft-proof lock assures protection of personal belongings.

UNIVERSAL JOINTS—Strong, Efficient, and Friction-Free

The three universal joints used in the underside, tandem-type propeller shaft of Super and Custom Commodore models are fitted with needle roller bearings and pressure-type lubrication fittings. It is unnecessary to drop the shaft or disassemble the universals in order to pack them with grease; they may be lubricated during the course of a regular periodic lubrication.

The Hudson system of universal joints, in design, construction, and installation, provides the most efficient means of carrying the power drive from the transmission to the rear axle.

BODY-AND-FRAME DESIGN

DIMENSIONS AND CONSTRUCTION

CAR DIMENSIONS:

- Wheelbase: 124"
- Over-all Length: 208½"
- Over-all Width: Super, 77½; Custom Commodore, 77¾"
- Over-all Height: loaded, 63½"
- Road Clearance: 8½"
- Head Room: 38½" maximum
- Hip Room, front and rear seats: 64"
- Elbow Room, front seat: 66"
- Elbow Room, rear seat: 65"

BODY STYLES—Hudson Super Series:

- 4-Door Sedan
- 2-Door Brougham
- Club Coupe
- Convertible Brougham

Hudson Custom Commodore Series:

- 4-Door Sedan
- Club Coupe
- Convertible Brougham

BODY-AND-FRAME CONSTRUCTION—All Hudson Models

Hudson's famous Monobilt body-and-frame construction, with recessed floor, is used throughout the new Super and Custom Commodore Series, even in the Convertible Broughams. By this unique method of construction, frame and body are welded into one piece of solid steel, with structural members even going outside the rear wheels. Thus, the passengers ride within the safety of welded steel girder members in the strongest, quietest, safest body that modern engineering has devised.

In addition to outstanding stanchness and safety, this exclusive method of body construction, with recessed floor, also makes possible new high standards of beauty, roominess and road-worthiness, and it permits a very low center of gravity, with full road clearance.

STEP-DOWN DESIGN—Basis of Modern Car Beauty

In Super and Custom Commodore models, passengers ride within the frame—not up on top of it. Thus "step-down" design has a far more important function than serving as the basis for Hudson's low-lined beauty. This design permits full-width seats, unobstructed by wheel housings, as well as full use of the space between the frame members for recessed floors, giving far more foot and leg room. The result is more interior roominess, more passenger space—and wider seats. Hudson owners get more usable inside room than in any other production model car on the American market today.
Amazing head room and full road clearance. Despite the fact that Super and Custom Commodore models are actually wider than they are high, there is no sacrifice of inside head room, which is 36 inches maximum. Passengers have just as much overhead clearance as they ever had in older-style cars with the bodies mounted up on top of the frame. "Step-down" design simply makes it possible to lower the entire passenger compartment, by recession of floors, without changing the space relationship between the roof and the floor.

The result is a new low silhouette that makes Hudson automobiles the lowest-built cars on the highway—yet they have full road clearance for driving on back roads and in farm country.

...With Added Safety and Stability

More important still, "step-down" design makes it possible, by recession of the floor, to lower the car's center of gravity to a considerable degree. And, as most car-buyers (and all automobile men) know, the more the center of gravity is lowered, the safer and more stable the car is on the highway. Because the car tends to hug the road at all speeds and on turns, it is not easily swayed from its course by wind, road inequalities, or load. And Hudson's exclusive "step-down" design makes all new Hudsons the lowest-built, safest, steadiest automobiles on the highway today—full this with full interior head room and full road clearance beneath the car!

MONOBILT + Construction with Recessed Floor . . . Body-and-Frame Combined

With this advanced construction in the Super and Custom Commodore models, the structural members, i.e., heavy, box-section foundation girders, husky cross members, sturdy body pillars and formed roof rails—completely encircle the passenger area. These members, rigidly welded together, form a sturdy bridge-like structure that is unequalled for ruggedness and strength, as well as quietness, in any automobile field. Then, when all steel roof, recessed floor, and body panels are solidly welded to the structural members, passengers are shielded in every direction by a unified structure of tough, unyielding steel.

Naturally, such a body is far safer on the highway—in fact, Hudson body construction, with its many unique features of strength and rigidity, is generally admitted to be the safest known. It also has added many advantages in the way of extra passenger comfort.

First, it is rattle-proof; it gives one of the quietest rides known without the humming, drumming, or chattering noises that many bodies of ordinary construction develop at certain speeds, or after a certain period of use.

Second, it makes possible a body that can be absolutely sealed against the weather. And this weather-tightness, which freedom from drafts and leaks, continues right through the long life of the car.

Third, Hudson's unique body construction, with recessed floor, makes possible one of the most perfect jobs of streamlining to be found anywhere in the world today. And perfect streamlining contributes not only to driving ease and stability in any kind of wind or weather—it also makes possible the low-built, streamlined styling which distinguishes all new Hudsons, setting them apart in appearance from any other automobiles in the world. Hudson-built automobiles stand out in the crowd—not only because of their outstanding performance, but because of their universally recognized "body and frame" style. You can never mistake a Hudson with Monobilt body-and-frame+ with recessed floor for any other car; it has its own refreshing individuality, in whatever company you see it.

Remember, with the recessed floor in the new Hudsons for 1950, the passengers ride inside the steel structural members that completely encircle the passenger area; the box-section steel foundation girders give added protection all around the passenger compartment, even outside the rear wheels. Passengers ride entirely within the foundation frame—not on top of it. And they ride completely ahead of the rear wheels, with full protection on all sides.

And the new 1950 Hudsons have more room inside than any other make, regardless of price. Here is something of tremendous importance to the average car buyer—something that he can see, feel, and check for himself. He gets the widest, roomiest, best-riding seats of any make of car. There is plenty of leg room, and ample head room. There is more hip room, more elbow room, and more shoulder room than in a comparable make of car—and here are the figures that prove it:

PASSENGER SPACE DIMENSIONS

- Front-seat hip room ... 64"
- Front-seat elbow room 66"
- Front-seat head room .. 38 1/2"
- Front-seat leg room .. 43 1/4"
- Rear-seat hip room (maximum) 64"
- Rear-seat leg room (maximum) 42"
- Rear-seat elbow room 65"

Yes—the new 1950 Hudsons give the new-car buyers more inside room than any other make of car, regardless of price or over-all size. Just as, feature by feature, the 1950 Hudsons give the motor-car buyer more basic and fundamental value per dollar invested. Only Hudson salesman can make these claims; only Hudson salesmen have these unique and powerful selling advantages over competition.

LOWER CENTER OF GRAVITY . . . Its Importance

Technically, the center of gravity is "that point in a body about which all the other parts exactly balance, in any position." In an automobile the lower this point can be brought down, the easier it is to secure absolute stability on the road. A very low center of gravity in all Hudson cars is the natural result of the "step-down" design. The new Super and Custom Commodores, with recessed floors and proportionately lowered roof and seats, have their weight closer to the ground; and therefore, the center of gravity is lowered below that of any other car.

This important development is exclusively Hudson—because only Hudson offers the design and construction features which make it possible. It is easily understood why cars with old-type body construction—that is, with the body bolted on top of the frame—lose the floor at a level with the frame's top edge, have a higher center of gravity. It is also easily understood why Hudson cars, with their recessed floors and lower center of gravity, are safer, more road-worthy, and far more desirable than the bulky, higher-built models featured by other makers.

ROADABILITY

Greater road-worthiness naturally comes from cars built with a lower center of gravity. "Step-down" design gives Hudson automobiles the most room, best ride, safest, most hug-the-road-way of going ever known. No other car in the world can match Hudson's road ability—because no other car in the world offers the priceless collection of safety and comfort features found in Hudson alone.

ROAD CLEARANCE . . . Not the Same as "Low Center of Gravity"

It is to be remembered at all times that the Super and Custom Commodore models of Hudson automobiles have a road clearance of a full 8 1/2". "Low center of gravity" on the other hand, is purely a theoretical balance point, and securing it means bringing parts of the car ordinarily "up in the air" closer to the road. At the same time preserving full road clearance within a full inside head room. Hudson's exclusive "step-down" design does this better than it has ever been done in all of automobile history, and practically anywhere by receding the floor down into the space between the frame members. Customers invariably exclaim, "Why didn't somebody think of that before?" Only Hudson does this—and only Hudson can claim "lowest center of gravity with full road clearance."

DOORS—Both Front and Rear

Both front and rear doors of the Super and Custom Commodore models are hinged at the front edge for greater safety. Even though accidentally unlatched while the car is in motion, air pressure tends to keep them closed. And their exclusive hinge design, with recessed interior panels, adds hip and elbow room to the very wide seats.

[116]
DOOR LOCKS . . . Designed for Safety and Convenience
Both front doors have outside door locks, with handles of the rigid type having push-button latch releases. Fully streamlined, and closed at both ends, there are no openings to catch clothing or hook sleeves and thus cause accidents. Door-locking knobs on the inside are pushed down to lock doors, and pulled up to unlock them. Children or others leaning on these inside knobs will lock the doors—not unlock them. . . a highly desirable safety feature. The inside and outside opening handles are both cooperative when the door locking knobs are pushed down—an added safety feature especially where children are concerned, an important safety feature. The driver cannot accidentally lock himself out of a new 1950 Hudson. The door must be deliberately locked; either the button must be pushed down from within, or the key inserted in the lock from without, and then turned.

DOOR PANELS—Recessed Feature Another “Hudson Exclusive”
Note that the door and window controls and arm rests of Super and Custom Commodore models are carried within the recessed inner face of the door itself—another exclusive Hudson feature which takes these parts out of the passenger’s way, and provides more hip and elbow room. This method of recessing the controls is also a safety feature.

FENDERS—Front and Rear
The careful streamlining of these units makes them seem an integral part of Hudson’s Monobilt body-and-frame. Actually, they are bolted-on parts that may be easily and quickly removed for repair or replacement, should this ever be necessary. Advanced designing and engineering make it possible to remove and install Hudson fenders with greater ease, and in quicker time than ever before. Based on today’s cost of materials and labor for the most frequently damaged sheet-metal parts of automobiles, the cost of this work on new 1950 model Hudsons is about 20% less than even on the 1946 and 1947 Hudsons.

FINISH—New Gem Lustre Improves and Beautifies
The new and beautiful finish, of advanced type, is more brilliant than anything previously used, because it has greater depth and clarity and very rich color. Its high metallic content refracts and reflects light more strongly, thus Hudson Gem Lustre finishes have the faculty of looking brilliant and new far longer—a definite contribution to pride of ownership. This brilliant new finish is now available on Super and Custom Commodore models in 3 special colors and 4 two-tone combinations (optional at slight extra cost) in addition to the 8 regular colors supplied.

INSULATION AND SOUNDPROOFING . . . Their Advantages
All body panels on Super and Custom Commodore models have been insulated with felt, or some similar suitable material, while the under-body, including the wheel houseings, the interior of the trunk, and the floor (from the rear of the toe-board riser), is heavily coated with a silicon-asphalt sound-deadening material which prevents drumming, rumbling, and other objectionable vibration noises which might occur in all-steel bodies. The interior of the roof is insulated against heat, cold, sound and vibration by various thicknesses of special insulating materials. This insulation also helps to keep the cold out of the car in winter and the heat out in summer—a most important consideration for salesmen, doctors, and others who must use their cars at all seasons.

INTERIOR LIGHTING—A New and Better Type
The bright dome light in all models of new 1950 Hudson automobiles is placed up front over the windshield header—not concealed at some point over, or around, the rear compartment. The result is a lighting system which can actually be used to read maps and road directions, or to search through handbags for travelling aids. This brilliant light serves, not only those in the front seat, but lights up the rear compartment well. Switch for this dome light is conveniently located for driver and front seat passengers.

Custom Commodore sedans and club coupes are also equipped with two rear-quarter dome lights and courtesy safety lights at all doors.

INSTRUMENT PANEL—Newly Designed for Greatest Convenience
Controls and instruments on the new Super and Custom Commodore models are grouped for the greatest convenience of the driver, and all instruments are new, with larger phosphorescent pointers which make for easier reading, night or day. The instrument numerals and markings are designed in accordance with the laws of optics to make them easier to read. Instrument lighting is indirect, with only numerals and pointers illuminated for improved visibility. “Teleflash” signals—invisible except when in operation—flash a bright red warning signal when oil pressure or the generator charging rate is insufficient. And in night driving, there is no dash reflection on the windshield to interfere with the driver’s vision. The instrument panel itself has been given a dark, two-tone wood finish on the Super models, and a two-tone leather finish on the Custom Commodore models. Both harmonize beautifully with the new Dura-fab plastic interior trim and the rich new upholstery fabrics. A large parcel compartment has a strong lock, with a push-button operated catch.

A generous ash receiver is located in the center of the instrument panel just below the windshield-wiper control knob. (Other ash receivers are at the ends of the front and rear seat cushions, in both Super and Custom Commodore models.) Near-perfect sound distribution and tone quality are secured by placing the radio speaker grille on top of the instrument panel, which gives remarkably clear reception for rear-seat passengers, without annoying volume in the front seat. Radio control knobs are positioned within easy reach of all front-seat passengers.

LIGHTS—Improved Sealed Beam Type
These are of the latest Sealed Beam design, with units that will function throughout their entire lives with practically no decrease in brilliance and efficiency. Both high and low beams provide a greater amount of light, at wider angles, than in any previous system. This permits the driver to see better at night, and to see farther and quicker with less eye strain and fatigue.

Parking lights are a part of the front grille ensemble. They are designed to harmonize with the front-end styling and to serve as the front-end directional lights when directional signal equipment is installed.

Tail lights are designed for greater brightness and visibility, and are carefully positioned at the rear of the car for maximum effectiveness. The tail light bulb serves a dual purpose, lighting up the interior of the trunk as well as the tail lights themselves. The tail lights are designed to serve as directional signals when such equipment is installed.

Stop lights are integral with the tail lights, with special bulbs of extra brilliance lighting up through a hydraulic switch, which is automatically closed when the brakes are applied.

Directional signals are optional equipment at slight extra cost, and are incorporated into the front parking lights and the tail lights as explained previously. A convenient control-lever on the steering column operates them at the will of the driver, and a signal on the instrument panel flashes red when the directional indicators are in use.

REAR WINDOWS—A Safety Feature
In Super models, a new, larger rear window has been incorporated into the sedans and broughams, and into the sedans in the Custom Commodore models. This larger rear window has 863.4 sq. in. of glass surface. It gives an increase of 43.5 per cent in vision. Thus, from the driver’s seat, there is an unobstructed view of the road behind, and even of the area immediately around the rear quarters. This adds greatly to the safety of driving, and appreciably lessens strain and fatigue.

UPHOLSTERY—New, Rich, Long-Wearing
An entirely new and beautiful upholstery is offered in combination with Dura-fab trim in the Custom Commodore closed models. The soft, luxurious upholstery prevents slipping and reduces wear and shine
on clothing. It is the longest-wearing automobile upholstery available and it comes in either tan with brown stripes or blue-gray with blue stripes.

Super Series closed cars are finished in a new and beautiful seipied broadcloth upholstery in combination with a new long-wearing, plastic Dura-fab trim.

The versatile and practical Dura-fab trim is a striking new vinyl plastic. This lustrous new material will not scuff, crack, split or peel; it is stainproof, and easily kept clean with a damp cloth. It will stay new-looking indefinitely, thus enhancing the car's resale value.

Convertible models in both the Super and Custom Commodore Series have genuine leather upholstery and matching leather-grain trim.

WEATHER-CONTROL VENTILATION—For Year-Round Comfort

The rainproof cowling ventilator takes in comparatively pure air from a point just in front of the windshield. This is in contrast with the front-end air intakes in many cars, which are almost in a direct line with the exhaust fumes from the cars just ahead, making it possible for dangerous contamination of the inside air of the car, and causing great discomfort for driver and passengers—an effect particularly noticeable in heavy, slow-moving traffic. Front doors are equipped with latch-type ventilating wings in Super models, and with crank-operated wings in Custom Commodore models. All doors have adjustable windows, regulated with crank-type controls. Rear-quarter windows are wing-type in sedans, full-opening type in club coupes.

WINDSHIELD—Full-View, Curved Type

Of safety glass, windshields in both Super and Custom Commodore models are curved for wide-angle, full-view vision. The curve and angle of mounting are scientifically engineered to eliminate reflections from both front and rear, making it far superior to windshields with flat glass surfaces. With a projected length of 59 inches, this is one of the widest windshields in the industry.

PLUS VALUES

IN THE CUSTOM COMMODORE SERIES

1. MORE POWER
 The Super-Six Engine develops 123 H.P. to
 “America’s Most Powerful Six.”
 The Super-Eight Engine develops 128 H.P.
 “America’s Most Masterful Eight.”

2. LONG WHEELBASE—Super Series models are built on a full 124” wheelbase.

3. FINE UPHOLSTERY—DeLuxe wool broadcloth upholstery in all Super Series closed models.

4. EXTRA ASH RECEIVERS—At all seat ends.

5. DELUXE INSTRUMENT PANEL—Finished in rich wood grain, two-tone effect.

6. CARPET of fine quality in rear compartment.

7. DASH CLOCK—10-hour, positive mechanical type.

8. REAR-VIEW MIRROR of big, full-view type.

9. 10” STEERING WHEEL—Safety-type, 2-spoke, of Polar-arc plastic.

10. ARM RESTS front and rear.

11. NEW LARGE REAR WINDOW in Sedans and Broughams.

12. NEW LICENSE LAMPS in center of rear bumper guards.

13. TWIN AIR-TYPE HORNs

14. HOOD ORNAMENT of ultramodern streamlined design.

15. VENTILATING WINDOWS of latched type in rear quarter Sedans.

16. DURA-FAB COVERED ROBE HANGER in Sedans and Club Coupes.

17. REAR-QUARTER VENTILATING WINDOWS of wing type in Sedans.

PLUS VALUES

IN THE HUDSON SUPER SERIES

1. NYLON BEDFORD CORD UPHOLSTERY—2-tone, 3-dimensional pattern, with color option.

2. FOAM RUBBER CUSHIONS—Front and rear.

3. DELUXE CARPET in rear passenger compartment.

4. DELUXE FRONT RUBBER FLOOR MAT in simulated ribbed carpet pattern.

5. ASSIST GRIPS on back of front seat.

6. FOLDING ARM REST of 16” lounge type in center of rear seat in Sedans and Club Coupes.

7. CIGARETTE LIGHTER

8. INSTRUMENT PANEL in 2-tone leather grain, with rich chrome ornamentation.

9. DELUXE SUN VISORS—adjustable to all positions, front and side.

10. VALANCE under windows.

11. DELUXE 3-SPOKE STEERING WHEEL

12. HALF-CIRCLE HORN RING of DeLuxe type.

13. DELUXE MEDALLION in center of steering wheel.

14. ELECTRIC CLOCK of modern design, with large, instant-reading dial.

15. REVEAL MOULDINGS of polished alloy metal, rear window.

16. FRONT-DOOR VENTILATING WINDOWS of crank type.

17. LUGGAGE COMPARTMENT MAT of non-slip ribbed rubber design.

18. STOP and TAIL LIGHTS of DeLuxe type.

19. DOME LIGHTS in two rear quarters, in addition to front dome lights.

20. COURTESY SAFETY LIGHTS at all doors.

21. OUTSIDE BUMPER GUARDS—Front.

22. HUB CAPS of large, DeLuxe design.

23. NEW SIDE ORNAMENTATION

24. TOP ORNAMENTS on front fenders.

25. SUPER DELUXE COMMODORE hood ornament.

26. OUTSIDE DOOR HANDLES of DeLuxe design.

27. QUILTED RECESSED DOOR PANELS of ultramodern design.

28. INTERIOR HARDWARE of special DeLuxe design.

29. DELUXE REAR DECK ORNAMENT