AN UNBIASED, unit-by-unit comparison of the 1949 Nash Ambassador with the New Hudson Super-Six and Super-Eight models reveals that both Hudson models have many desirable advantages over the Ambassador, despite the fact that this Nash model is priced higher than either of the two Hudson Super-Series models.

Impartial comparisons bring out the facts. The Hudson models are much larger, roomier, better streamlined cars than the Ambassador, and are also heavier and are equipped with more powerful engines than the Nash model. Size is an accepted gauge of motor car value. The 124-inch long wheelbase of all New Hudson Super Series cars is three inches longer than the 121-inch wheelbase of the Nash Ambassador. Not only do the Hudsons have a longer wheelbase but they are wider inside to afford more usable seating room.

Since the primary purpose of any automobile is to furnish mobile carrying space for its driver and passengers, the efficiency of a car is gauged by the percentage of the space created by the body structure which is made available for passenger use.

Both Hudson Super-Series models have more interior room and more usable room than the Nash Ambassador. Compare the body interior dimensions of the Nash Ambassador with those of the Hudson Super-Series models. Here are just a few of the plus values in roominess which Hudson buyers receive and which the Nash Ambassador owner must do without: The Hudson Super-Series owner buys a front seat which is 1 1/4 inches wider than the Ambassador front seat; the Hudson Super-Series owner receives 1 1/4 inches more cushion width in the rear seat over the Ambassador measurements; the Hudson driver sits higher for better visibility. Check some of the actual advantages in interior roominess:

<table>
<thead>
<tr>
<th>A NASH AMBASSADOR</th>
<th>HUDDSON SUPER-SERIES MODELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of front seat cushion</td>
<td>60 inches</td>
</tr>
<tr>
<td>Width of rear seat cushion</td>
<td>57 inches</td>
</tr>
<tr>
<td>Head room at front seat</td>
<td>36 inches</td>
</tr>
<tr>
<td>Head room at rear seat</td>
<td>35 inches</td>
</tr>
<tr>
<td>Height of front seat cushion</td>
<td>11 inches</td>
</tr>
<tr>
<td>Vertical distance between steering wheel and seat cushion</td>
<td>6 inches</td>
</tr>
<tr>
<td>Leg room in front seat</td>
<td>42 inches</td>
</tr>
</tbody>
</table>

Comparison of elbow-room and shoulder-room measurements in the Nash Ambassador with the more ample measurements of the Hudson Super-Series models shows an even more dramatic advantage in favor of Hudson roominess. Front-seat elbow width in the Ambassador is 63 inches. Hudson recesses the front door panels to permit an elbow-room dimension of 66 inches, 5 1/2 inches more elbow room than the Ambassador provides. This and other more bountiful interior measurements in the Hudson models mean extra comfort and less crowding of passengers in the Hudson models.

An unbiased comparison of other Nash Ambassador interior dimensions indicates that greater regard for passenger and driver comfort has been built into the Hudson cars. For example, there is more leg room in the Hudson front seat by more than 1 1/4 inches; Hudson allows 6 1/4 inches vertical clearance between steering wheel and front seat cushion—Nash allows only 6
Hudson Advantages Over the 1949 Nash Ambassador in Roadability, Comfort, Riding and Handling

One of the more important features contributing to roadability, handling and riding qualities, is the distribution of weight in an automobile. In the Hudson-built cars, the center of weight is much closer to the road than in the Nash Ambassador. This lower center of gravity helps to keep the Hudson Super-Series cars on a more even keel, lessens the tendency of the car to sway and provides a more comfortable ride.

The weight in the Hudson models, 3555 pounds for the Hudson Super-Six and 3555 pounds for the Super-Eight, is also more scientifically distributed than that in the Nash Ambassador, which weighs only 3420 pounds and has more weight forward on the front suspension system. This equal distribution of weight between front and rear in the Hudson models makes it easier to hold the Super-Series models in a true course. Also, the Hudson-built models carry their load between the wheels so that the roadability is as good with a full load as when the driver is alone in the car.

It is also necessary to consider the factors which affect the ride in order to fully appreciate the advantages of the Hudson spring suspension over that used in the Nash Ambassador.

Rear Springs

The Hudson system of rear springing is a much more costly and efficient type than the Nash coil-spring rear suspension used by the Nash company since 1939. Coil springs are unable to resist driving thrust and have no effect in stabilizing the ride or holding the car on an even keel. Coil springs smooth out up-and-down motion only. The rear springs in the Hudson-built cars are of the semi-elliptic leaf type which smooth out up-and-down motion. The front springs in the Hudson-built cars are of the semi-elliptic leaf type which smooth out up-and-down motion. The rear springs in the Hudson-built cars are of the semi-elliptic leaf type which smooth out up-and-down motion. The front springs in the Hudson-built cars are of the semi-elliptic leaf type which smooth out up-and-down motion.

Hottchkiss Drive

The Nash Ambassador models use a very long propeller shaft which extends from the transmission to the rear axle. The Hudson's superior Hottchkiss drive (used also by Cadillac and Packard) has three universal joints as compared with only one universal joint in the Nash Ambassador Series models. This improved Hudson Hottchkiss prevents "whip" and eliminates the vibration which is developed on long propeller shafts of the type used by Nash.

Comfort

The Hudson seats have been designed to be comfortable for almost every passenger—based on an engineering knowledge of anatomy, plus data on the anatomical variations among the riding public. About 80% of all men and 85% of all women are between 62 and 72 inches tall. The seat-of-the-pants models are designed to this range of heights, and the seats have been prepared for both posture orthopedists from reliable data on short and tall figures and aligned for the variations in leg length and head height to be accommodated.

Weather-Control

Nash makes a great deal about Weather-Fly. All Hudson models, at slight extra cost, can be equipped with Hudson Weather-Control, a four-fold heating—ventilating—conditioned-air—defrosting system. Hudson Weather-Control fits the car with fresh air in the rear area, gently pressure-circulated, warmed in cold weather and heated in cold weather to the temperature desired. Temperature is maintained by thermostat control. Steam and frost are banished from windshield and windows—vision is unhampered.

Easier Steering

An impartial comparison of the driving and handling characteristics of the Nash Ambassador and the Hudson-built cars reveals that the Hudson cars have many advantages not inherent in Nash. Compare the turning radius of the Ambassador, 21 feet, 4 inches, with the much more convenient and efficient turning radius of 20 feet, 5 inches, of the New Hudson Super-Series. This means a much greater ease of parking and turning in traffic. Hudson uses the most costly, accurately designed steering system in the industry. In the Hudson steering system there is no need to anchor a relay-link and idler to the frame, a type of construction used by Nash which multiplies the number of moving and wearing parts and permits greater play in the front wheels because of increased leverage. Hudson has supplied excellent straight-line steering, a minimum of tire wear, short turning radius and directional control on all types of roads with a steering ratio of 20:1. The Nash Ambassador uses a ratio of 16:1, which means greater wear and less easy steering.

Improved Sound Insulation

Compare these factors—1. Valve-in-head engines of the type used in the Nash Ambassador are notably more noisy than the L-head type used in Hudson models. 2. Torque-tube drives transmit more tire noise to the car body than the Hudson Hottchkiss drive. 3. Excessive fatigue is induced by high noise levels. These noises, usually masked by noises in the lower ranges, increase the driver's reaction time. The detrimental effect of noise on human fatigue has been recognized for some time. The quieter car is the safer car. The Hudson Ambassador and Super-Hudson have a low-noise, low-thump, low-shock, low-noise base, sound-deadening material, is applied to the entire under-body panel, from front seat to the extreme rear body. Also, all panels are sound-deadened with an acoustical blanket of felt or other sound-deadening material.

Clutch

The Hudson clutch pressure is more than double the Nash pressure at all times. The Hudson clutch operates in a cushion of oil to keep the impact as clutch surfaces come together. The Nash clutch is the dry-plate, single dry-disk woven type. The oil cushion in the Hudson clutch reduces wear, eliminates grab and chattering, lubricates hard-to-oil splines and eliminates friction and wear.
Hudson offers an excellent, optional, automatic transmission known as Drive-Master. Nash does not have an automatic transmission. The Hudson Drive-Master does all shifting of clutch and forward gears automatically and has a great number of additional advantages, including two alternate ways to drive. Besides being low in cost, the Hudson Drive-Master combines greater motorizing safety, more controllability, takes 14 steps out of driving, is trouble-free and the driver can choose any desired gear which is not possible with other types of automatic transmissions. The Drive-Master automatic transmission also eliminates “creeps” at stops, permits the driver to shift at any speed, eliminates power losses, provides faster, better gas mileage and quieter operation. There is no accidental shifting with Drive-Master. It is quieter than other automatic transmissions, reduces oil consumption, reduces wear on motor parts, prevents engine stalling, increases reliability and is useful for teaching beginners to drive.

Power-to-Weight Ratio

Powered as it is with a smaller engine, the Nash Ambassador models are burdened with much more weight per available horsepower than the Hudson Super-Six and Super-Eight models. Each horsepower in the Nash Ambassador engine must move 29.7 pounds, while each horsepower in the Hudson Super-Six and Super-Eight engines, which are available horsepower for the Hudson Super-Six and Super-Eight models. This means that each horsepower available in the Hudson engine is burdened by nearly one pound more weight or 1 1/3 more weight per horsepower than the Hudson Super-Six engine and that each Nash horsepower must do more than one pound nearly 4/5 more work than each horsepower of the Hudson Super-Eight engine. This is an important advantage for the Hudson cars because each extra pound of weight in an automobile, coupled with lower horsepower, as it is in the Nash Ambassador, places an added burden on each function of the engine and affects the performance and economy of the car as a whole. Moreover, extra power and more gasoline is required to start and move this extra weight in the Nash Ambassador as compared with the Hudson models.

Engine Efficiency

The piston displacement of the Nash Ambassador engine is 234.8 cubic inches, from which is developed only 112-horsepower or 477 horsepower produced for each cubic inch of piston displacement. This is easily determined by dividing the peak horsepower produced by the engine’s cubic inches of piston displacement. Compare the Nash figure with the more powerful 262-cubic inch Hudson Super-Six engine which develops 121 horsepower and with the 254-cubic inch Hudson Super-Eight engine which shows a great advantage in efficiency over the Nash Ambassador engine, maximum as each cubic inch of piston displacement is capable of producing 501 horsepower per cubic inch or nearly 5 1/3 more power per cubic inch than the Nash engine.

Weights

In addition to being a much less powerful automobile, the Nash Ambassador, despite its higher price, also has a much lighter and smaller automobile than either the Hudson Super-Six or Hudson Super-Eight. License weights of the 4-door sedan, secured from the Office of the Secretary of State, show that the Nash Ambassador weights only 3,420 pounds compared to the heavier, more powerful 3,595-pound Hudson Super-Six which weighs more than 7 1/3 more.

Battery

All Hudson models use 17-plate, 120-ampere-hour rating batteries. The Nash Ambassador models are equipped with much smaller 15-plate, 105-ampere-hour batteries. The extra plate area in the Hudson batteries provides a much higher battery current for cranking the engine in extremely cold weather.

Generator

Compare the Nash Ambassador generator output of 3/4 amperes at 7.4 volts with the high-output, Hudson fan-forced, ventilation-type, third-brush generator, which reaches a maximum charging rate of 3 1/2 amperes at 8 volts, 1/3 more than the Ambassador generator. This means extra protection against running down the battery and ample current for all electrical equipment.
What the Hudson Super-Series Cars Have . . .
that Nash Asks the Ambassador Buyer to Do Without

- **Step-Down Feature**
  Nash has an integral body-and-frame arrangement but no "step-down" feature. The Hudson "step-down" design brings smarter styling, aerodynamic streamlining, increased safety, greater riding comfort and many other advantages.

- **Greater Interior Roominess**
  Hudson has these advantages in interior roominess over the Nash Ambassador: 1½" wider front seat; 1½" wider rear seat; more front-seat leg room; 1¼ inches more front-seat head room; 2¼ inches more rear-seat head room, and many other advantages.

- **Lower Center of Gravity**
  Hudson cars have more clearance between the road and the underbody of the car than the Nash Ambassador, more head room inside, and yet the Hudson models are 1¼ inches lower in over-all height than the Ambassador. Hudson utilization of the vital space between frame-members makes this possible.

- **Hudson Is Much Heavier**
  The Nash Ambassador weighs only 3520 pounds compared to the larger, roomier and more powerful 3555-pound Hudson Super-Six and the 3565-pound Super-Eight. Weight in the Hudson cars is more scientifically distributed both fore and aft and between the wheels.

- **Super-Series Engines Are More Powerful**
  Both the Hudson Super-Six and the Hudson Super-Eight engines are much more powerful, efficient and economical than the smaller 112-horsepower engine used in the Nash Ambassador. The Hudson 6-cylinder engine develops 121 horsepower. The Hudson 8-cylinder engine produces 128 horsepower.

- **More Horsepower for Each Pound of Weight**
  Both Hudson engines have more horsepower for each pound of weight than does the Nash Ambassador. The Hudson Super-Six has one horsepower available for each 29.3 pounds, the Super-Eight, one horsepower for each 27.8 pounds. The Nash Ambassador is burdened with 29.7 pounds for each horsepower.

- **Oil-Cushioned Clutch**
  There is no hydraulic cushion in the Nash clutch. Hudson cars offer this advantage which eliminates chatter and grab and makes for longer life of all working parts.

- **Greater Braking Safety**
  Hudson models offer hydraulic brakes, plus a reserve mechanical braking system operating on the rear wheels from the same brake pedal, plus a parking brake. Nash offers only hydraulic brakes and an old-fashioned, hand-set, emergency brake.

- **Three Braking Systems**
  Hudson offers a reserve braking system operating from the same foot pedal. The Nash Ambassador does not offer this additional safety feature. In the Hudson there is always a second complete braking system in reserve; a slight additional travel of the same brake pedal automatically brings in the reserve system.

- **Center-Point Steering**
  Hudson offers Center-Point steering, the most costly, accurately designed steering system in the automobile industry. Nash does not have this attractive feature. Compare the longer turning radius of the Ambassador, 21 feet, 4 inches, with the more convenient and efficient 20½ feet for the Hudson models.

- **Reduced Road and Engine Noise**
  Valve-in-head engines are notably more noisy than the "L"-head type used in the Hudson models. The Hudson Hotchkiss drive transmits less tire noise to the car body than the Torque-tube drive used in the Nash Ambassador. Also, in the Hudson models a silicon-asphalt, sound-deadening material is applied to the entire under-body panel.

- **Hotchkiss Drive**
  Hudson, as do the highest priced cars, uses Hotchkiss drive, which prevents "whip" and eliminates the vibration which is developed in long propeller shafts required with Torque-tube drive which is used in the Nash Ambassador.

- **Drive-Master Automatic Transmission**
  Only Hudson offers the famous Drive-Master automatic transmission. All shifting must be done manually in the Nash Ambassador. This Hudson option offers the choice of three methods of driving: 1. Conventional. 2. Manual shifting without using the clutch. 3. Fully automatic shifting of gears in forward speeds.

**And All These "Extra Value" Features**

Hudson is equipped with a greater capacity generator, larger battery, front dome light which the Ambassador doesn't have . . . roller cam tappets, pinned piston rings and many other advantages in comfort, roadability, safety and driving pleasure.